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In	Bayesian	modelling,	there	are	two	main	
types	of	uncertainty	we	can	model	[1]:
• Epistemic	uncertainty:	uncertainty	in	the	
model,	capturing	what	our	model	
doesn’t	know	due	to	lack	of	training	
data.	Can	be	explained	away	with	
increased	training	data.

• Aleatoric	uncertainty:	information	which	
our	data	cannot	explain.	Can	be	
explained	away	with	increased	sensor	
precision.

It	is	important	to	model	aleatoric uncertainty	for:	
• Large	data	situations,	where	epistemic	uncertainty	is	explained	away,	
• Real-time	applications,	because	we	can	form	aleatoric	models	
without	expensive	MC	samples.

• Noisy	data,	because	we	can	learn	to	attenuate	erroneous	labels.

with	deep	learning.	Our	model’s	uncertainty	for	pixel	output	𝑦" is	given	by:
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Using	Monte	Carlo	dropout	samples,	T,	learning	aleatoric	uncertainty	with	loss:
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Experiments	training	on	one	dataset	and	
testing	on	another.
• Aleatoric	uncertainty	cannot	be	
explained	away	with	more	data,	

• Aleatoric	uncertainty	does	not	increase	
for	out-of-data	examples	(situations	
different	from	training	set),

• Epistemic	uncertainty	increases	with	
decreasing	training	size,

• Epistemic	uncertainty	increases	with	
examples	out	of	the	training	distribution.

for	semantic	segmentation	and	per-
pixel	depth	regression	datasets.

We	use	a	convolutional	network	
based	on	DenseNet [20]	with	103	
layers	and	9.4M	parameters

Per-pixel	depth	regression

Modelling	uncertainty	allows	the	
model	to	learn	to	attenuate	the	
effect	from	erroneous	labels	and	
learn	loss	attenuation.
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And	epistemic uncertainty	is	important	for:	
• Safety-critical	applications,	because	epistemic	
uncertainty	is	required	to	understand	examples	
which	are	different	from	training	data,	

• Small	datasets	where	the	training	data	is	
sparse.	
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