1. Types of Uncertainty

In Bayesian modelling, there are two main
types of uncertainty we can model [1]:

* Epistemic uncertainty: uncertainty in the
model, capturing what our model
doesn’t know due to lack of training
data. Can be explained away with
increased training data.

* Aleatoric uncertainty: information which
our data cannot explain. Can be
explained away with increased sensor

precision.

4. Uncertainty with Distance
from Training Data
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* Aleatoric uncertainty cannot be
explained away with more data,

e Aleatoric uncertainty does not increase
for out-of-data examples (situations

different from

training set),

* Epistemic uncertainty increases with
decreasing training size,

* Epistemic uncertainty increases with
examples out of the training distribution.

Train Test Aleatoric | Epistemic
dataset dataset RMS | variance variance
Make3D /4 | Make3D | 5.76 0.506 7.73
Make3D /2 | Make3D | 4.62 0.521 4.38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87

Per-pixel depth regression

2. We jointly model aleatoric and epistemic uncertainty
with deep learning. Our model’s uncertainty for pixel output y; is given by:
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Using Monte Carlo dropout samples, T, learning aleatoric uncertainty with loss:
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5. Conclusions

't is important to model aleatoric uncertainty for:

* Real-time applications, because we can form aleatoric models
without expensive MC samples.

* Noisy data, because we can learn to attenuate erroneous labels.

3. SOTA performance

for semantic segmentation and per-

pixel depth regression datasets.

We use a convolutional network
based on DenseNet [20] with 103

layers and 9.4M parameters

CamVid IoU

SegNet [28] 46.4

FCN-8 [29] 57.0

DeepLab-LFOV [24] 61.6

Bayesian SegNet [22] 63.1

Dilation8 [30] 65.3

Dilation8 + FSO [31] 66.1

DenseNet [20] 66.9

This work:

DenseNet (Our Implementation) | 67.1

+ Aleatoric Uncertainty 67.4

+ Epistemic Uncertainty 67.2

+ Aleatoric & Epistemic 67.5
Make3D rel rms | logig
Karsch et al. [33] 0.355 | 9.20 | 0.127
Liu et al. [34] 0.335 | 9.49 | 0.137
Li et al. [35] 0.278 | 7.19 | 0.092
Laina et al. [26] 0.176 | 4.46 | 0.072

This work:

DenseNet Baseline 0.167 | 3.92 | 0.064
+ Aleatoric Uncertainty | 0.149 | 3.93 | 0.061
+ Epistemic Uncertainty | 0.162 | 3.87 | 0.064
+ Aleatoric & Epistemic | 0.149 | 4.08 | 0.063
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And epistemic uncertainty is important for:

e Large data situations, where epistemic uncertainty is explained away, * Safety-critical applications, because epistemic
uncertainty is required to understand examples

which are different from training data,

 Small datasets where the training data is
sparse.



