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How can we make autonomous vehicles safe?
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percept ion Object detection

Object tracking

Free-space estimation

Behavior Estimation

Motion Prediction

T Motion planning

‘ action ‘ Control
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End-to-end learning from perception to action
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Mnih et al. "Human-level control through deep  Bojarski et al. "End to end learning for self-driving cars." arXiv 2016
reinforcement learning." Nature 2015
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Deep Learning

Input Image Semantic Segmentation

Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?” arXiv preprint 1703.04977, 2017.
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Bayesian Deep Learning

Input Image Semantic Segmentation Uncertainty

Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?” arXiv preprint 1703.04977, 2017.
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A Concrete Example

Input » Perception » Prediction » Decision
1. Deep Learning
Sensor Input Perception ]
Detect Intersection: YES
Detect Red Light: NO
Detect Other Car: YES
Detect Other Car's Indicator: NO

Detect Car in Turning Lane: NO
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Three research themes

1. Safety
2. Interpretability

3. Compliance
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Safety Concrete Problems

* Improving uncertainty inference in Bayesian deep learning models
* Real-time constraint restricts sampling methods
* Models often underestimate uncertainty

* Propagate uncertainty through all layers
* Important to account for input uncertainty in modular systems

* Metrics for quantifying uncertainty estimates
* Accurately distinguishing different modes of uncertainty
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Types of uncertainty

Epistemic * Measures what you're model doesn’t know

uncertainty . 5, pe explained away by more data

Aleatoric  Measures what you can’t understand from data

uncertainty .« Can be explained away by better sensing

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty
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Stereo Depth Estimation

Input Left Image Input Right Image
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Stereo Depth Prediction Stereo Prediction Uncertainty

Kendall et al. “End-to-End Learning of Geometry and Context for Deep Stereo Regression” ICCV 2017
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* Model saliency (how models make decisions)
* inferring causal relationship between input signal and output decision

* Auxiliary outputs
* human understandable intermediate representations

e Attribution of performance
* validating individual components in an end-to-end model



Interpretability

End-to-end learning
with intermediate
outputs

=

Inputs:
1. Camera video

2. Sat-Nav directions

Scene geometry

Scene semantics

Object motion prediction

Outputs:
Driving commands

Alex Kendall, Yarin Gal and Roberto Cipolla. “Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics.” arxiv preprint 1705.07115, 2017.
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* Compliance to the passenger and law

* V2V, V2I, V2U communication
* “Back seat driving” within safe operational envelope

* Data efficient and bias-free learning
* removing algorithmic bias and fairly accounting for rare scenarios

* Leveraging uncertainty for smarter learning curriculum



Conclusions

* Deep learning is not enough, we need Bayesian deep learning for safe
autonomous vehicles

e Research problems can be grouped into safety, and

* In addition to safety, this research is important to:
* help passengers trust AV technology and explain behavior
* help society overcome a reasonable fear of the unknown
 aid engineers validate against safety standards
e accountability for insurance and legal liability by explaining decisions
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